Page / Subject

2. Ordering Whole Numbers
3. Ordering Whole Numbers Answers
4. Comparing Whole Numbers
5. Comparing Whole Numbers Answers
6. Negative Numbers
7. Negative Numbers Answers
8. Rounding Whole Numbers
9. Rounding Whole Numbers Answers
10. Roman Numerals
11. Roman Numerals Answers
12. Adding Whole Numbers
13. Adding Whole Numbers Answers
14. Subtracting Whole Numbers
15. Subtracting Whole Numbers Answers
16. Multiples \& Common Multiples
17. Multiples \& Common Multiples Answers
18. Factors \& Common Factors
Answers
19. Factors \& Common Factors Answers
20. Short Multiplication
21. Short Multiplication Answers
22. Long Multiplication
23. Long Multiplication Answers
24. Short Division
25. Short Division Answers

26. Square Numbers \& Cube Numbers
27. Square Numbers \& Cube Numbers Answers
28. Multiply by 10,100 or 1000
29. Multiply by 10, 100 or 1000 Answers
30. Divide by 10,100 or 1000
31. Divide by 10, 100 or 1000 Answers
32. Equivalent Fractions
33. Equivalent Fractions Answers
34. Compare \& Order Fractions
35. Compare \& Order Fractions Answers
36. Converting Improper Fractions to Mixed Numbers
37. Converting Improper Fractions to Mixed Numbers Answers
38. Converting Mixed Numbers to Improper Fractions
39. Converting Mixed Numbers to Improper Fractions Answers

Year 5 Maths @miss_teasel

Ordering Whole Numbers Answers

Step 1

smallest number
Place all your numbers in a column, with all the digits aligned correctly and then check whether you're placing them in ascending or descending order.

3	4	3	6
3	3	6	4
	3	4	6

Step 2

Compare the digits starting from the left, if they're the same value look at the next column until you find a difference.

Negative Numbers

-5	-4	-3	-2	-1	0	1	2	3	4	5

Step 1

Negative numbers are numbers smaller than zero. Draw yourself a number line like the above if you need to, to help you.

Step 2

Use your number line just like a normal one for answering questions. For 3-7, start at 3 and count back 7 spaces.

-5	-4	-3	-2	-1	0	1	2	3	4	5

So $3-7=-4$

Step 3

For ${ }^{-} 3+5$, you would start at ${ }^{-} 3$ and count forwards 5 spaces.

So $-3+5=2$

Calculation	Answer
$8-10=$	
$-8+4=$	
$5-13=$	
$-1+16=$	
$32-48=$	
$-28+14=$	
$-3-13=$	
$-5+34=$	
$15-37=$	
$-42+16=$	
$-4-25=$	
$-46+87=$	
$37-58=$	
$-329+150=$	

Negative Numbers Answers

-5	-4	-3	-2	-1	0	1	2	3	4	5

Step 1

Negative numbers are numbers smaller than zero. Draw yourself a number line like the above if you need to, to help you.

Step 2

Use your number line just like a normal one for answering questions. For 3-7, start at 3 and count back 7 spaces.

-5	-4	-3	-2	-1	0	1	2	3	4	5

So $3-7=-4$

Step 3
For ${ }^{-3} 3+5$, you would start at ${ }^{-3} 3$ and count forwards 5 spaces.

-5	-4	-3	-2	-1	0	1	2	3	4	5

So $-3+5=2$

Calculation	Answer
$8-10=$	-2
$-8+4=$	-4
$5-13=$	-8
$-1+16=$	15
$32-48=$	-16
$-28+14=$	-14
$-3-13=$	-16
$-5+34=$	29
$15-37=$	-22
$-42+16=$	-26
$-4-25=$	-29
$-46+87=$	41
$37-58=$	-21
$-329+150=$	-179

Step 1

Find out what you're rounding to and underline the digit in that column.

Step 2

Circle the number to the right of the underlined digit. If it's 5 or more, add one more to the underlined digit. If it's 4 or less, leave it as it is.

Step 3

Replace the circled number to a zero, and change any other number to the right of it to a zero as well.

	Nearest 10	Nearest 100	Nearest 1000
327			
192			
853			
769			
407			
250			
1436			
1825			
2413			
3179			
6952			
4577			
9552			
15,295			

Rounding Whole Numbers Answers

Step 1

Find out what you're rounding to and underline the digit in that column.

Step 2

Circle the number to the right of the underlined digit. If it's 5 or more, add one more to the underlined digit. If it's 4 or less, leave it as it is.

Step 3

Replace the circled number to a zero, and change any other number to the right of it to a zero as well.

	Nearest 10	Nearest 100	Nearest 1000
327	330	300	0
192	190	200	0
853	850	900	1000
769	770	800	1000
407	410	400	0
250	250	300	0
1436	1440	1400	1000
1825	1830	1800	2000
2413	2410	2400	2000
3179	3180	3200	3000
6952	6950	7000	7000
4577	4580	4600	5000
9552	9550	9600	10,000
15,295	15,300	15,300	15,000

Roman Numerals

1	5	10	50	100	500	1000
I	V	X	L	C	D	M

Step 1
Roman Numerals have no place value, so you need to create each digit of the number separately by partitioning.
So:

$\left.\begin{array}{rl}1 & 2\end{array}\right)=$| 1000 | $=M$ |
| ---: | :--- |
| 200 | $=C C$ |
| 40 | $=X L$ |
| 9 | $=I X$ |

Step 2

There are some 'rules'. You cannot have more than 3 of the same numerals in a row. So for the number 4 and the number 9 , you would need to do a "subtraction."

Step 3

Another 'rule' is that if a smaller numeral is in front of a larger numeral, we take this away. If the smaller numeral is after, we add.

$$
1249=\text { MCCXLIX }
$$

Roman Numeral	Number
DCCXV	
MMXLV	
MXXII	
DXCVII	
DCLXI	
LXXXIX	
XXVI	
MMMDCX	
XLV	
CCLXVIII	
CDLX	
MCDV	
LXI	
MDXXVI	

Roman Numerals

1	5	10	50	100	500	1000
I	V	X	L	C	D	M

Step 1
Roman Numerals have no place value, so you need to create each digit of the number separately by partitioning.
So:
$1249=1000=M$

Step 2

There are some 'rules'. You cannot have more than 3 of the same numerals in a row. So for the number 4 and the number 9 , you would need to do a "subtraction."

Step 3

Another 'rule' is that if a smaller numeral is in front of a larger numeral, we take this away. If the smaller numeral is after, we add.

$$
1249=\text { MCCXLIX }
$$

Roman Numeral	Number
DCCXV	715
MMXLV	2045
MXXII	1022
DXCVII	597
DCLXI	661
LXXXIX	89
XXVI	26
MMMDCX	45
XLV	268
CCLXVIII	460
CDLX	1405
MCDV	1526
LXI	
MDXXVI	

Step 1

Set out your addition in formal column method, aligning the digits in the correct place value columns.

$$
\begin{array}{r}
6542237 \\
+\quad 1388256 \\
\hline
\end{array}
$$

Adding Whole Numbers Answers

Step 1

Set out your addition in formal column method, aligning the digits in the correct place value columns.

Step 3
Make sure any number you've carried over, you've included in your next addition.

$$
\begin{array}{r}
654237 \\
+138256 \\
\hline 792493 \\
\hline
\end{array}
$$

Step 1

Set out your subtraction in formal column method, aligning the digits in the correct place value columns.

Step 1

$$
\begin{array}{r}
8{ }^{4} 5^{10} 1^{13} \\
+\quad 427 \\
\hline 8086 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
39859 \\
-\quad 34103 \\
\hline 5756 \\
\hline
\end{array}
$$

7499
-6216
1283

Step 3
You always subtract the bottom number from the top. When this can't be done, we need to regroup by exchanging.

$$
\begin{array}{r}
4611157 \\
-155725 \\
\hline 3005432 \\
\hline
\end{array}
$$

Step 1

A multiple is a number that is found within the times tables (can be divided by another number without a remainder. For example:

Multiples of $2=2,4,6,8,10$ etc...

Step 2

To find common multiples, write out the multiples of both numbers.
Multiples of $3=3,6,9,12,15,18,21,24,30$
Multiples of $5=5,10,15,20,25,30$

Step 3

Look for the numbers that appear in both lists. These will be the common multiples.

15 and 30 appear in both lists of multiples and so they are both common multiples of 3 and 5 .

Question	Answer
$5^{\text {th }}$ multiple of 8	
$9^{\text {th }}$ multiple of 3	
$12^{\text {th }}$ multiple of 7	
$6^{\text {th }}$ multiple of 11	
$7^{\text {th }}$ multiple of 4	
$15^{\text {th }}$ multiple of 5	

Least common multiple (LCM)	Answer
5 and 6	
2 and 8	
3 and 11	
9 and 4	
6 and 7	
4,5 and 6	

Multiples \& Common Multiples Answers

Step 1

A multiple is a number that is found within the times tables (can be divided by another number without a remainder. For example:

Multiples of $2=2,4,6,8,10$ etc...

Step 2

To find common multiples, write out the multiples of both numbers.

Multiples of $3=3,6,9,12,15,18,21,24,30$
Multiples of $5=5,10,15,20,25,30$

Step 3

Look for the numbers that appear in both lists. These will be the common multiples.

15 and 30 appear in both lists of multiples and so they are both common multiples of 3 and 5 .

Least common multiple (LCM)	Answer
5 and 6	30
2 and 8	8
3 and 11	33
9 and 4	36
6 and 7	42
4,5 and 6	60

Step 1

A factor is a number that divides into another number exactly and we often talk about factor pairs. These are the pair of numbers that when multiplied together give us the number as the product (answer). For example:

Factors of 12	$=$	1	x	1	2
		2	x	6	
			3	x	4

Step 2

Then list your factor pairs in ascending order, ignoring any duplicates.

Factors of:	Answer
8	
35	
16	
40	
24	
64	

 factors.

28, 56 and 70
Common factors of 8 and $12=1,2,4$

Step 1

A factor is a number that divides into another number exactly and we often talk about factor pairs. These are the pair of numbers that when multiplied together give us the number as the product (answer). For example:

Factors of 12	$=$	1	x	1	2
		2	x	6	
			x	4	

Step 2

Then list your factor pairs in ascending order, ignoring any duplicates.

Factors of:	Answer
8	$1,2,4,8$
35	$1,5,7,35$
16	$1,2,4,8,16$
40	$1,2,4,5,8,10,20,40$
24	$1,2,3,4,6,8,12,24$
64	$1,2,4,8,16,32,64$

 factors.

$$
\text { Common factors of } 8 \text { and } 12=1,2,4
$$

Short Multiplication

Step 1

Set our your multiplication in the formal method. Multiply the top ones digit by the multiplier. Carry any extra digits if needed.

	217
x	

Step 2
Then move onto the top tens digit and multiply this by the multiplier. Add any digits that have been carried over and carry any extra digits if needed.

	2	1	7
x			9
		5	3
		6	

Step 3
Continue moving across the top digits one step at a time until you reach the end.

	2	1	7
x			9
1	9	5	3
1	1	6	

Short Multiplication Answers

Step 1

Set our your multiplication in the formal method. Multiply the top ones digit by the multiplier. Carry any extra digits if needed.

	217	
x		9

Step 2
Then move onto the top tens digit and multiply this by the multiplier. Add any digits that have been carried over and carry any extra digits if needed.

	2	1
x		7
	5	3
	3	3

Step 3
Continue moving across the top digits one step at a time until you reach the end.

	2	1	7
x			9
1	9	5	3
1	1	6	

Step 1

Set our your multiplication in the formal method. Multiply the top ones digit by the ones multiplier as if you were doing short multiplication. Carry any extra digits if needed and ensure to add them to the next number.

extra digts	neded	and	-	add	俍	(he	next	Uber.				X			4	7
	2	1	7									2	3	9	7	5
X		5	9									1	3	7	0	0
1	9	5	3	$(217 \times 9$							1	6	0	9	7	5
1, 0	8	5														
12	8	0	3													
Step 2																
Add a zero below the ones digit, this is going to make our tens multiplier into a tens instead of a unit value.													6	5	0	2
Step 3												X			8	9
Then multiply your top number by your tens multiplier, starting with your units and working your way along like normal.												5	8	5	1	8
Step 4											5	2	0	1	6	0
Once you have worked out both multiplications, add the answers together.											5	7	8	6	7	8

		3	4	2	5								
	x			4	7				5	0	8	3	
	2	3	9	7	5		x				9	6	6
	1	3	7	0	0		3		0	4	9	8	8
1	6	0	9	7	5	4	5		7	4	7		0
						4	8	8	7	9	6	8	8
		6	5	0	2								
	x			8	9				9	4	6	6	7
	5	8	5	1	8		x				3	4	4
5	2	0	1	6	0		3		7	8	6	8	8
5	7	8	6	7	8	2	8		4	0	1	0	0
						3	2	21	1	8	7	8	8

Square Numbers \& Cube Numbers

Step 1

A square number is a number multiplied by itself. It is written as a small 2 after the number.
For example:
$2^{2}=2 x 2=4$

Step 2

A cube number is a number multiplied by itself, and then by itself again. It is written as a small 3 after the number.
For example:

Question	Answer
1^{3}	
2^{3}	
3^{3}	
4^{3}	
5^{3}	
6^{3}	
7^{3}	
8^{3}	
9^{3}	
10^{3}	
11^{3}	
12^{3}	

Step 1

A square number is a number multiplied by itself. It is written as a small 2 after the number.
For example:
$2^{2}=2 x 2=4$

Step 2

A cube number is a number multiplied by itself, and then by itself again. It is written as a small 3 after the number.
For example:

Question	Answer
1^{3}	1
2^{3}	8
3^{3}	27
4^{3}	64
5^{3}	125
6^{3}	216
7^{3}	343
8^{3}	512
9^{3}	729
10^{3}	1000
11^{3}	1331
12^{3}	1728

Step 1

Lay out the number, include the place value headings if it helps you.

Step 2

Work out the number of places the digit needs to move. The number of zeros in the multiplier will help you.
$10=1$ zero = 1 place
$100=2$ zeros $=2$ places
$1000=3$ zeros $=3$ places

Step 3

Move each digit the number of places to the left, adding zeroes as place holders where necessary.

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
			$\mathbf{7}$	$\mathbf{2}$	$\mathbf{1}$		7.21 $\times 10$ Makes the number 10 times bigger. Move each digit 1
place to the left.							

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
			$\mathbf{7}$	$\mathbf{2}$	$\mathbf{1}$		7.21 $\times 100$ Makes the number 100 times bigger. Move each digitit 2 places to the left.
	$\mathbf{7}$	$\mathbf{2}$	1				

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1} / \mathbf{1 0}$	$\mathbf{1} / \mathbf{1 0 0}$	$\mathbf{1} / \mathbf{1 0 0 0}$	
			7	$\mathbf{2}$	1		7.21 $\times 1000$ Makes the number 1000 times bigger. Move each digit 3 places to the left.
7	2	1	0				

	$X 10$	$X 100$	$X 1000$
46			
7.2			
10.6			
6.98			
17.613			
108.1			
87.091			
471			
19.08			
3.928			
60.07			

Step 1

Lay out the number, include the place value headings if it helps you.

Step 2

Work out the number of places the digit needs to move. The number of zeros in the multiplier will help you.
$10=1$ zero = 1 place
$100=2$ zeros $=2$ places
$1000=3$ zeros $=3$ places

Step 3

Move each digit the number of places to the left, adding zeroes as place holders where necessary.

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
			$\mathbf{7}$	$\mathbf{2}$	$\mathbf{1}$		7.21 $\times 10$ Makes the number 10 times bigger. Move each digit 1
place to the left.							

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
			$\mathbf{7}$	$\mathbf{2}$	1		7.21 $\times 100$ Makes the number 100 times bigger. Move each digit 2 places to the eft.
	7	2	1				

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1} / \mathbf{1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1} / \mathbf{1 0 0 0}$	
			$\mathbf{7}$	$\mathbf{2}$	1		7.21×1000 Makes the number 1000 times biger.. Move each digit 3 places to the left.
7	2	1	0				

	$\mathbf{X 1 0}$	$\mathbf{X} 100$	$\mathbf{X 1 0 0 0}$
$\mathbf{4 6}$	460	4600	46,000
$\mathbf{7 . 2}$	72	720	7200
$\mathbf{1 0 . 6}$	106	1060	10,600
$\mathbf{6 . 9 8}$	69.8	698	6980
$\mathbf{1 7 . 6 1 3}$	176.13	1761.3	17,613
$\mathbf{1 0 8 . 1}$	1081	10,810	108,100
$\mathbf{8 7 . 0 9 1}$	870.91	8709.1	87,091
$\mathbf{4 7 1}$	4710	47,100	471,000
$\mathbf{1 9 . 0 8}$	190.8	1908	19,080
$\mathbf{3 . 9 2 8}$	39.28	392.8	3928
$\mathbf{6 0 . 0 7}$	600.7	6007	60,070

Divide by 10,100 or 1000

Step 1

Lay out the number, include the place value headings if it helps you.

Step 2

Work out the number of places the digit needs to move. The number of zeros in the divisor will help you.
$10=1$ zero = 1 place
$100=2$ zeros $=2$ places
$1000=3$ zeros $=3$ places

Step 3

Move each digit the number of places to the right, adding zeroes as place holders where necessary.

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1} / \mathbf{1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
	7	2	1				$721 \div 10$ Makes the number 10 times smaller. Move each digit 1 place to the right.
		7	$\mathbf{2}$	1			

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1} / \mathbf{1 0}$	$\mathbf{1} / \mathbf{1 0 0}$	$\mathbf{1} / \mathbf{1 0 0 0}$	
	7	2	1				721 $\div 100$ Makes the number 100 times smaller. Move each digit 2 places to the right.

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
	7	2	1				$721 \div 1000$ Makes the number 1000 times smaller. Move each digit 3 places to the right.

	$\div 10$	$\div 100$	$\div 1000$
781			
9183			
2			
18.9			
319.6			
37			
1938.3			
2819			
572			
38.39			
423.2			

Step 1

Lay out the number, include the place value headings if it helps you.

Step 2

Work out the number of places the digit needs to move. The number of zeros in the divisor will help you.
$10=1$ zero = 1 place
$100=2$ zeros $=2$ places
$1000=3$ zeros $=3$ places

Step 3

Move each digit the number of places to the right, adding zeroes as place holders where necessary.

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
	$\mathbf{7}$	$\mathbf{2}$	1				721 $\div 10$ Makes the number 10 times smalle. Move each digit $\mathbf{1}$ place to the right.
		7	$\mathbf{2}$	$\mathbf{1}$			

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1 / 1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
	$\mathbf{7}$	$\mathbf{2}$	1				$721 \div 100$ Makes the number 100 times smaller. Move each digit 2 places to the right.
			7	$\mathbf{2}$	$\mathbf{1}$		

Th	\mathbf{H}	\mathbf{T}	\mathbf{U}	$\mathbf{1} / \mathbf{1 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 1 0 0 0}$	
	$\mathbf{7}$	$\mathbf{2}$	1				$721 \div 1000$ Makes the number 1000 times smalle. Move each digit 3 places to the right.
			0	$\mathbf{7}$	$\mathbf{2}$	1	

	$\div \mathbf{1 0}$	$\div 100$	$\div 1000$
$\mathbf{7 8 1}$	78.1	7.81	0.781
$\mathbf{9 1 8 3}$	918.3	91.83	9.183
$\mathbf{2}$	0.2	0.02	0.002
$\mathbf{1 8 . 9}$	1.89	0.189	0.0189
$\mathbf{3 1 9 . 6}$	31.96	3.196	0.3196
$\mathbf{3 7}$	3.7	0.37	0.037
$\mathbf{1 9 3 8 . 3}$	193.83	19.383	1.9383
$\mathbf{2 8 1 9}$	281.9	28.19	2.189
$\mathbf{5 7 2}$	57.2	5.72	0.572
$\mathbf{3 8 . 3 9}$	3.839	0.3839	0.03839
$\mathbf{4 2 3 . 2}$	42.32	4.232	0.4232

Step 1

Equivalent fractions are fractions worth the same amount, but are written in different terms.

For example:

Step 2

To find an equivalent fraction, you find a pattern between either the numerators or denominators that have been given.

$1 / 3=121$

Step 3

Whatever the pattern is for the denominator/numerator, is the same for the missing part.
"Whatever we do to the top, we do to the bottom" and vice versa.

$$
1 / 3=7 / 21
$$

$$
18 / 20=9 / 10
$$

Original	Equivalent	Equivalent
$2 / 5$	$/ 10$	$/ 25$
$12 / 20$	$3 /$	$/ 10$
$4 / 16$	$/ 4$	$8 /$
$6 / 10$	$/ 5$	$9 /$
$3 / 4$	$/ 20$	$12 /$
$1 / 2$	$8 /$	$13 /$
$1 / 5$	$1 /$	$/ 35$
$16 / 30$	$1 / 4$	$6 / 30$
$3 / 9$	$3 /$	$/ 50$
$6 / 8$		860
$2 / 14$	$36 / 50$	100

Equivalent Fractions Answers

Step 1

Equivalent fractions are fractions worth the same amount, but are written in different terms.
For example:

Step 2

To find an equivalent fraction, you find a pattern between either the numerators or denominators that have been given.

Original	Equivalent	Equivalent
$2 / 5$	$4 / 10$	$10 / 25$
$12 / 20$	$3 / 5$	$6 / 10$
$4 / 16$	$1 / 4$	$8 / 32$
$6 / 10$	$3 / 5$	$9 / 15$
$3 / 4$	$15 / 20$	$12 / 16$
$1 / 2$	$25 / 50$	$13 / 26$
$1 / 5$	$4 / 20$	$11 / 55$
$16 / 30$	$8 / 15$	$160 / 300$
$3 / 9$	$1 / 3$	$6 / 18$
$6 / 8$	$3 / 4$	$27 / 36$
$2 / 14$	$1 / 7$	$3 / 21$
$30 / 50$	$3 / 5$	$18 / 30$
$86 / 100$	$43 / 50$	$860 / 1000$

Compare \& Order Fractions

Step 1

Convert all fractions into equivalent fractions, this will make it the easiest to compare and/or order them.

Step 2 - Ordering

smallest fraction
Once converted into equivalent fractions, look at the numerators (top number) which will tell you the order to put them in. Convert them back to their original fractions.
Smallest to Largest
$6 / 18,8 / 18,15 / 18$

Largest to Smallest
$15 / 18,8 / 18,6 / 18$
In the original fractions:

Step 3 - Comparing

To compare, again, look at the numerators (top number) to tell you which symbol to use. Remember to write them in their original fraction.

$\mathbf{6 / 1 8}$	$<$	$\mathbf{8} / \mathbf{1 8}$	In the original fractions:	$\mathbf{1 / 3}$	$<$
$\mathbf{1 5} / \mathbf{1 8}$	$>6 / 18$	In the original fractions:	$5 / 6$	$>$	$\mathbf{1 / 3}$

Put the following fractions in ascending order

$8 / 10$	$12 / 20$	$2 / 5$
$2 / 3$	$7 / 12$	$3 / 4$

Put the following fractions in descending order

Use $>,<$ or $=$ to compare these fractions.

$2 / 5$		$1 / 2$
$5 / 7$		$2 / 3$
$8 / 10$		$4 / 5$

Step 1

Convert all fractions into equivalent fractions, this will make it the easiest to compare and/or order them.

Step 2 - Ordering

smallest fraction
Once converted into equivalent fractions, look at the numerators (top number) which will tell you the order to put them in. Convert them back to their original fractions.
Smallest to Largest
$6 / 18,8 / 18,15 / 18$

Largest to Smallest
$15 / 18,8 / 18,6 / 18$
In the original fractions:

Step 3 - Comparing

To compare, again, look at the numerators (top number) to tell you which symbol to use. Remember to write them in their original fraction.

$\mathbf{6 / 1 8}$	$<$	$\mathbf{8} / \mathbf{1 8}$	In the original fractions:	$\mathbf{1 / 3}$	$<$
$\mathbf{1 5} / \mathbf{1 8}$	$>$	$\mathbf{6} / \mathbf{1 8}$	In the original fractions:	$\mathbf{5} / \mathbf{6}$	$>$
$\mathbf{1 / 3}$					

Put the following fractions in ascending order

$8 / 10$	$12 / 20$	$2 / 5$
$2 / 5$	$12 / 20$	$8 / 10$

$2 / 3$	$7 / 12$	$3 / 4$
$7 / 12$	$2 / 3$	$3 / 4$

Put the following fractions in descending order

$3 / 6$	$5 / 9$	$2 / 3$
$2 / 3$	$5 / 9$	$3 / 6$

$2 / 5$	$1 / 2$	$3 / 10$
$1 / 2$	$2 / 5$	$3 / 10$

$\underline{\text { Use }>,<\text { or }=\text { to compare these fractions. }}$

$2 / 5$	$<$	$1 / 2$
$5 / 7$	$>$	$2 / 3$
$8 / 10$	$=$	$4 / 5$

Step 1

An improper fraction is a fraction where the numerator (top number) is bigger than the denominator (bottom number).

Step 2

The denominator tells us how many pieces make 1 whole. If we divide the numerator by the denominator we will know how many wholes we have.

Step 3

The remainder is our fraction part of our mixed number.
So ra becomes $3 / 4$

Step 4

Our final answer is our whole number and fraction together.

$$
11 / 4=23 / 4
$$

Improper Fraction	Mixed Number
$11 / 4$	
$8 / 5$	
$10 / 3$	
$23 / 6$	
$34 / 8$	
$11 / 10$	
$30 / 9$	
$7 / 2$	
$31 / 4$	
$69 / 7$	
$18 / 5$	
$19 / 6$	
$52 / 11$	

Converting Improper Fractions To Mixed Numbers Answers

Step 1

An improper fraction is a fraction where the numerator (top number) is bigger than the denominator (bottom number).

Step 2

The denominator tells us how many pieces make 1 whole. If we divide the numerator by the denominator we will know how many wholes we have.

Step 3

The remainder is our fraction part of our mixed number.
So ra becomes $3 / 4$

Step 4

Our final answer is our whole number and fraction together.

$$
11 / 4=23 / 4
$$

Improper Fraction	Mixed Number
$11 / 4$	$2^{3 / 4}$
$8 / 5$	$1^{3 / 5} 5$
$10 / 3$	$3^{1 / 3}$
$23 / 6$	$3^{5 / 6}$
$34 / 8$	$4^{2 / 3} 8$
$11 / 10$	$1^{1 / 10}$
$30 / 9$	$3^{3 / 9}$
$7 / 2$	$3^{1 / 2}$
$31 / 4$	$7^{3 / 4}$
$69 / 7$	$9^{6 / 7}$
$18 / 5$	$3^{3 / 5}$
$19 / 6$	$3^{1 / 6}$
$52 / 11$	$4^{8 / 11}$

Step 1

A mixed number is a combination of whole numbers and fractions.

Step 2

Multiply the denominator (bottom number) by the whole number. This will tell you how many (numerator) for the whole number.

$$
4 \mathrm{x} 2=8
$$

Step 3

Add the numerator of your fraction to your answer. This will give your total numerator.

$$
8+3=11
$$

Step 4

Write your answer as a numerator over the existing denominator.

Mixed Number	Improper Fraction
$15 / 6$	
$31 / 4$	
$13 / 7$	
$22 / 4$	
$51 / 3$	
$32 / 5$	
$24 / 5$	
$43 / 4$	
$31 / 3$	
$36 / 8$	
8 2/6	
$56 / 7$	
$43 / 9$	

Converting Mixed Numbers to Improper Fractions Answers

Step 1
A mixed number is a combination of whole numbers and fractions.

Step 2

Multiply the denominator (bottom number) by the whole number. This will tell you how many (numerator) for the whole number.

$$
4 \mathrm{x} 2=8
$$

Step 3

Add the numerator of your fraction to your answer. This will give your total numerator.

$$
8+3=11
$$

Step 4

Write your answer as a numerator over the existing denominator.
$11 / 4$

Mixed Number	Improper Fraction
$\mathbf{1} 5 / 6$	$11 / 6$
$\mathbf{3} 1 / 4$	$13 / 4$
$\mathbf{1}^{3} 3 / 7$	$10 / 7$
$\mathbf{2}^{2} / 4$	$10 / 4$
$\mathbf{5} 1 / 3$	$16 / 3$
$\mathbf{3}^{2} / 5$	$17 / 5$
$\mathbf{2}^{4} / 5$	$14 / 5$
$\mathbf{4} 3 / 4$	$19 / 4$
$\mathbf{3} 1 / 3$	$10 / 3$
$\mathbf{3}^{6} / 8$	$30 / 8$
$\mathbf{8} 2 / 6$	$50 / 6$
$\mathbf{5} 6 / 7$	$41 / 7$
$\mathbf{4} 3 / 9$	$39 / 9$

Step 1

Convert both fractions to the same denominator by finding equivalent fractions.
x2

$$
1 / 4+3 / 8=2 / 8+3 / 8
$$

Step 2

Add the numerators together but not the denominators.

$$
2 / 8+3 / 8=5 / 8
$$

Step 3

Simplify the answer if you can.
$5 / 8$ cannot be simplified as the only factor they share is 1.

However:

12/20 the example answer can be simplified.

$$
12 / 20=3 / 5
$$

	Convert Question to Same Denominator	Answer
$1 / 4+7 / 20=$	$(\times 5)^{5} / 20+7 / 20=$	$=12 / 20$ or $3 / 5$
$1 / 3+1 / 6=$		
$1 / 3+2 / 9=$		
$5 / 8+1 / 4=$		
$3 / 5+1 / 10=$		
$7 / 15+1 / 5=$		
$2 / 3+5 / 24=$		
$3 / 5+1 / 4=$		
$1 / 2+2 / 5=$		
$2 / 3+1 / 4=$		
$3 / 5+3 / 8=$		
$3 / 8+2 / 7=$		
$5 / 11+3 / 7=$		

Step 1

Convert both fractions to the same denominator by finding equivalent fractions. Sometimes you may need to change both fractions.

Step 2

Add the numerators together but not the denominators.

$$
2 / 8+3 / 8=5 / 8
$$

Step 3

Simplify the answer if you can.
$5 / 8$ cannot be simplified as the only factor they share is 1.

However:

$12 / 20$ the example answer can be simplified.

$$
12 / 20=3 / 5
$$

	Answer	Simplified
$1 / 4+7 / 20=$	$(\times 5) 5 / 20+7 / 20=$	$=12 / 20$ or $3 / 5$
$1 / 3+1 / 6=$	$=3 / 6$	$=1 / 2$
$1 / 3+2 / 9=$	$=5 / 9$	
$5 / 8+1 / 4=$	$=7 / 8$	
$3 / 5+1 / 10=$	$=7 / 10$	$=2 / 5$
$7 / 15+1 / 5=$	$=10 / 15$	$=7 / 8$
$2 / 3+5 / 24=$	$=21 / 24$	
$3 / 5+1 / 4=$	$=17 / 20$	
$1 / 2+2 / 5=$	$=9 / 10$	
$2 / 3+1 / 4=$	$=11 / 12$	
$3 / 5+3 / 8=$	$=39 / 40$	
$3 / 8+2 / 7=$	$=37 / 56$	
$5 / 11+3 / 7=$	$=68 / 77$	

Subtracting Fractions

Step 1

Convert both fractions to the same denominator by finding equivalent fractions.

Step 2

Subtract the numerators, but not the denominators.

$$
3 / 8-2 / 8=1 / 8
$$

Step 3

Simplify the answer if you can.
$1 / 8$ cannot be simplified as it is a unit fraction (numerator of 1).

However:

$2 / 6$ the example answer can be simplified.

$$
\stackrel{\div}{2}^{\circ} / 6=1 / 6
$$

	Convert Question to Same Denominator	Answer
$5 / 6-1 / 2=$	$(\times 3) 5 / 6-3 / 6=$	$=2 / 6$ or $1 / 3$
$6 / 8-1 / 2=$		
$1 / 2-1 / 6=$		
$9 / 16-1 / 4=$		
$2 / 5-3 / 10=$		
$3 / 8-5 / 24=$		
$6 / 7-5 / 14=$		
$3 / 4-5 / 12=$		
$2 / 3-4 / 9=$		
$7 / 8-1 / 2=$		
$5 / 6-1 / 5=$		
$1 / 3-1 / 4=$		
$2 / 5-1 / 8=$		

Subtracting Fractions Answers

Step 1

Convert both fractions to the same denominator by finding equivalent fractions.

Step 2

Subtract the numerators, but not the denominators.

$$
3 / 8-2 / 8=1 / 8
$$

Step 3
Simplify the answer if you can.
$1 / 8$ cannot be simplified as it is a unit fraction (numerator of 1).

However:

2/6 the example answer can be simplified.

$$
\div 2 / 2=1 / 6
$$

	Answer	Simplified
$5 / 6-1 / 2=$	(xu) $5 / 6-3 / 6=$	$=2 / 6$ or $1 / 3$
$6 / 8-1 / 2=$	$=2 / 8$	$=1 / 4$
$1 / 2-1 / 6=$	$=2 / 6$	$=1 / 3$
$9 / 16-1 / 4=$	$=5 / 16$	
$2 / 5-3 / 10=$	$=1 / 10$	$=1 / 6$
$3 / 8-5 / 24=$	$=4 / 24$	$=1 / 2$
$6 / 7-5 / 14=$	$=7 / 14$	$=1 / 3$
$3 / 4-5 / 12=$	$=4 / 12$	
$2 / 3-4 / 9=$	$=2 / 9$	
$7 / 8-1 / 2=$	$=3 / 8$	
$5 / 6-1 / 5=$	$=19 / 30$	
$1 / 3-1 / 4=$	$=1 / 12$	
$2 / 5-1 / 8=$	$=11 / 40$	

Multiplying Fractions by Whole Numbers

Step 1

Multiplying means doing the same thing a certain amount of times. If I have $3 / 4$ and multiply it by 3 , that means I need $3 / 4,3$ times.

Step 2

Multiply the numerator by the whole number. $3 \times 3=9$ so 9 is our answers numerator.

$$
3 / 4 \times 3=9 / 4
$$

Step 3

Convert into a mixed number where necessary by using your denominator to help you work out how many wholes you have.
$9 / 4$
9 (numerator) $\div 4($ denominator $)=2$ r 1
...so our answer is $2 \frac{1}{4}$

	Answer as an Improper Fraction	Answer as a Mixed Number
$3 / 4 \times 3$	$9 / 4 / 4$	
$1 / 7 \times 5$		
$2 / 5 \times 6$		
$2 / 10 \times 9$		
$5 / 7 \times 3$		
$5 / 8 \times 2$		
$7 / 12 \times 8$		
$4 / 5 \times 4$		
$9 / 11 \times 7$		
$6 / 7 \times 12$		
$1 / 2 \times 5$		
$3 / 8 \times 7$		
$8 / 9 \times 4$		

Multiplying Fractions by Whole Numbers Answers

Step 1

Multiplying means doing the same thing a certain amount of times. If I have $3 / 4$ and multiply it by 3 , that means I need $3 / 4,3$ times.

Step 2

Multiply the numerator by the whole number. $3 \times 3=9$ so 9 is our answers numerator.

$$
3 / 4 \times 3=9 / 4
$$

Step 3

Convert into a mixed number where necessary by using your denominator to help you work out how many wholes you have.
$9 / 4$
9 (numerator) $\div 4($ denominator $)=2$ r 1
...so our answer is $2^{1 / 4}$

	Answer as an Improper Fraction	Answer as a Mixed Number
$3 / 4 \times 3$	$9 / 4$	$21 / 4$
$1 / 7 \times 5$	$5 / 7$	
$2 / 5 \times 6$	$12 / 5$	$22 / 5$
$2 / 10 \times 9$	18/10	$18 / 10$ or $14 / 5$
$5 / 7 \times 3$	15/7	$21 / 7$
$5 / 8 \times 2$	10/8	$12 / 8$ or $11 / 4$
$7 / 12{ }^{x} 8$	56/12	$48 / 12$ or $4 \frac{2}{3}$
$4 / 5 \times 4$	16/5	$31 / 5$
$9 / 11 \times 7$	$63 / 11$	$5 \quad 8 / 11$
$6 / 7 \times 12$	$72 / 7$	$10^{2} / 7$
$1 / 2 \times 5$	$5 / 2$	$21 / 2$
$3 / 8 \times 7$	21/8	$25 / 8$
$8 / 9 \times 4$	32/9	$35 / 9$

Writing Decimals as Fractions

Tens	Units	\cdot	Tenths	Hundredths	Thousandths
	4	\cdot	3	6	8

Step 1

Look at the column that the last decimal digit is in, this will give you your denominator.
Tenths = / 10
Hundredths $=/ 100$
Thousandths = / 1000

Step 2

You can then place the numbers in the decimal as the numerator, ignoring the decimal point. This will give you the answer as an improper fraction.

Step 3

For an answer of a mixed number, only place the decimal numbers as the numerator. The whole numbers (units, tens etc.) will be written as a whole number.

Decimal	Fraction
0.2	
1.36	
41.3	
6.08	
5.634	
9.42	
10.109	
3.065	
4.8	
18.65	
7.3	
4.006	
9.34	
8.06	

Writing Decimals as Fractions Answers

Tens	Units	\cdot	Tenths	Hundredths	Thousandths
	4	\cdot	3	6	8

Step 1

Look at the column that the last decimal digit is in, this will give you your denominator.
Tenths = / 10
Hundredths = / 100
Thousandths = / 1000

Step 2

You can then place the numbers in the decimal as the numerator, ignoring the decimal point. This will give you the answer as an improper fraction.

Step 3

For an answer of a mixed number, only place the decimal numbers as the numerator. The whole numbers (units, tens etc.) will be written as a whole number.

Decimal	Fraction
0.2	2/10
1.36	$136 / 100$ or $1^{36} / 100$
41.3	$413 / 10$ or $413 / 10$
6.08	$608 / 100$ or $6^{8 / 100}$
5.634	$5634 / 1000$ or $5^{634} / 1000$
9.42	$942 / 100$ or $9^{42} / 100$
10.109	10109/1000 or $10^{109} / 1000$
3.065	$3065 / 1000$ or $3^{65} / 1000$
4.8	$48 / 10$ or $4^{8 / 10}$
18.65	$1865 / 100$ or $188^{65} / 100$
7.3	$73 / 10$ or $73 / 10$
4.006	4006/1000 or $4 \frac{6}{1000}$
0.34	34/100
8.06	$806 / 100$ or $8 \frac{6}{100}$

Tens	Units	\cdot	Tenths	Hundredths	Thousandths
1	4	\cdot	2	0	8

Step 1

As we're rounding to the nearest whole number, we need to underline the units column and circle the tenths.

Step 2

If the tenths (circled number) is 5 or more, add one more to the underlined digit. If it's 4 or less, leave it as it is.

Step 3

For your answer, just write the units - you don't need anything after the decimal point.

$$
5
$$

Number	Rounded to the Nearest Whole Number
2.7	
6.28	
9.831	
14.3	
67.57	
80.04	
35.921	
421.6	
142.12	
371.823	
4.289	
99.72	
802.008	
129.7	

Rounding Decimals to the Nearest Whole Number Answers

Tens	Units	\cdot	Tenths	Hundredths	Thousandths
1	4	\cdot	2	0	8

Step 1

As we're rounding to the nearest whole number, we need to underline the units column and circle the tenths.

Step 2

If the tenths (circled number) is 5 or more, add one more to the underlined digit. If it's 4 or less, leave it as it is.

Step 3

For your answer, just write the units - you don't need anything after the decimal point.

Number	Rounded to the Nearest Whole Number
2.7	3
6.28	6
9.831	10
14.3	14
67.57	68
80.04	80
35.921	36
421.6	422
142.12	142
371.823	372
4.289	4
99.72	100
802.008	802
129.7	130

Ordering Decimals Answers

Step 1

smallest number
Place all your numbers in a column, with all the digits aligned correctly and then check whether you're placing them in ascending or descending order.

$4 \bullet 3$
$3 \bullet 6$
$3 \bullet 4$

Step 2

Compare the digits starting from the left, if they're the same value look at the next column until you find a difference.

Step 1

Percentages are shown by using the symbol \% and 'per cent' means 'out of 100.'

So if we have 67% this means 67 out of 100 .

Step 2

If we know that it's out of 100, we can place this as our denominator, as this tells us how many make a whole.

Step 3

The number of our percentage tells us how many of that 100 we are counting, so that becomes the numerator, which gives us our fraction.

$67 / 100$

Step 4

Once we have our fraction we can convert it into our decimal. As we're working with hundredths this is 2 places away from our decimal point. This means the last number of our numerator (the 7) goes in our hundredths, and the first number (the 6) will go in our tenths.

Percentage	Fraction	Decimal
67%	$67 / 100$	0.67
32%		
7%		
18%		
91%		
50%		
31%		
80%		
3%		
100%		
26%		
47%		
99%		

Step 1

Percentages are shown by using the symbol $\%$ and 'per cent' means 'out of 100.'

So if we have 67% this means 67 out of 100 .

Step 2

If we know that it's out of 100, we can place this as our denominator, as this tells us how many make a whole.

Step 3

The number of our percentage tells us how many of that 100 we are counting, so that becomes the numerator, which gives us our fraction.

$67 / 100$

Step 4

Once we have our fraction we can convert it into our decimal. As we're working with hundredths this is 2 places away from our decimal point. This means the last number of our numerator (the 7) goes in our hundredths, and the first number (the 6) will go in our tenths.

$$
67 / 100
$$

Units	$\mathbf{1} / \mathbf{1 0}$ Tenths	$\mathbf{1} / \mathbf{1 0 0}$ Hundredths
0	6	7

Percentage	Fraction	Decimal
67%	$67 / 100$	0.67
32%	$32 / 100$	0.32
7%	$7 / 100$	0.07
18%	$18 / 100$	0.18
91%	$91 / 100$	0.91
50%	$50 / 100$	0.5
31%	$31 / 100$	0.31
80%	$80 / 100$	0.8
3%	$3 / 100$	0.03
100%	$26 / 100$	1
26%	$47 / 100$	0.47
47%	$99 / 100$	0.99
99%		

Units of Length	Units of Mass	Units of Capacity
$10 \mathrm{~mm}=1 \mathrm{~cm}$	$1000 \mathrm{~g}=1 \mathrm{~kg}$	$1000 \mathrm{ml}=1 \mathrm{l}$
$100 \mathrm{~cm}=1 \mathrm{~m}$		
$1000 \mathrm{~m}=1 \mathrm{~km}$		

Step 1

Write out the measurements that you need, thinking of how many go into 1 of the other. For example, if converting cm to metres, we need to know how many cm are in a m .

Step 2

Add arrows showing how you get to each value from the other.

	$\times 1000$	
1000 cm	=	1 m
	1000	

Step 3

You can then use these calculations to work out your answer.
What is 3708 cm in m ?
To get from cm to m we need to $\div 1000$ so we need to divide 3708 by 1000 .

$$
3708 \mathrm{~cm}=3.708 \mathrm{~m}
$$

Question	Answer
What is 3 l in ml ?	3000 ml
What is 4500 g in kg ?	4.5 kg
What is 3.4 km in m ?	3400 m
What is 67 cm in mm ?	670 mm
What is $380 \mathrm{ml} \mathrm{in} \mathrm{l?}$	0.381
What is 2.78 kg in g ?	2780 g
What is 14 m in cm ?	1400 cm
What is 7 mm in cm ?	0.7 cm
What is 15.6 l in ml ?	15,600 ml
What is 837 g in kg ?	0.837 kg
What is 1.2 m in mm?	1200 mm
What is $63,000 \mathrm{~cm}$ in km ?	0.63 km
What is 2 g in kg ?	0.002 kg

Step 1

A composite or compound shape is a shape made up of more than one square or rectangle.

Year 5 Maths @miss_teasel

Step 2

When working out the missing sides, you look at all the horizontal lines, or the vertical lines.
If you know two shorter sides, add these together to find the longer opposite side.
$3 \mathrm{~cm}+4 \mathrm{~cm}=7 \mathrm{~cm}$

Step 3

If you know a longer side opposite a shorter side, subtract the shorter side from the longer side.
$14 \mathrm{~cm}-6 \mathrm{~cm}=8 \mathrm{~cm}$

Step 4

Add all of the lengths of the sides together to find the perimeter.
$14 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+6 \mathrm{~cm}+7 \mathrm{~cm}=34 \mathrm{~cm}$

Perimeter of Composite Shapes Answers

Year 5 Maths @miss_teasel

Step 1

A composite or compound shape is a shape made up of more than one square or rectangle.

When working out the missing sides, you look at all the horizontal lines, or the vertical lines.
If you know two shorter sides, add these together to find the longer opposite side.
$3 \mathrm{~cm}+4 \mathrm{~cm}=7 \mathrm{~cm}$

Step 3

If you know a longer side opposite a shorter side, subtract the shorter side from the longer side.

Step 4

Make sure you've filled in all of the missing sides. Then add all of the lengths of the sides together to find the perimeter.
$14 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+6 \mathrm{~cm}+7 \mathrm{~cm}=34 \mathrm{~cm}$

Area of Rectangles

Year 5 Maths @miss_teasel

Step 1

The area tells you space inside a shape.
To work out the area of a rectangle, or square, multiply the width by the length.

So the area $=8$

Step 2

Once you've calculated your area, ensure that you write the correct unit of measure. This rectangle has been measured in cm , we then need to use the squared symbol as it's measured in 2 directions.
Area $=4 \times 2=8 \mathrm{~cm}^{2}$

Step 3

To work out the area of composite or compound shapes (all rectangular), split the shape into appropriate rectangles and work out the area for them individually. Then add them together to get the area of the whole shape.

Step 1

The area tells you space inside a shape.
To work out the area of a rectangle, or square, multiply the width by the length.

So the area $=8$

Step 2

Once you've calculated your area, ensure that you write the correct unit of measure. This rectangle has been measured in cm , we then need to use the squared symbol as it's measured in 2 directions.

Area of Irregular Shapes

Year 5 Maths @miss_teasel

Step 1

Starting with the full squares, number them starting from 1.

Step 2

Once you've numbered all the full squares, number the pieces of squares, trying to match them as best as you can to make a whole square.

Step 3

Once all squares are approximately accounted for that is the estimated area of the shape.

Area $=$\begin{tabular}{l|l|l|}

\hline \& $\mathrm{cm}^{2} \longleftarrow$ \& | Don't forget to include your |
| :--- |
| units and your squared |
| symbol (${ }^{2}$) |

\hline
\end{tabular}

Area of Irregular Shapes Answers

Step 1

Starting with the full squares, number them starting from 1.
 trying to match them as best as you can to make a whole square.

Missing Angles

Year 5 Maths @miss_teasel

Find the missing angles:
To find the missing angles of a right angle, we know that a right angle is exactly 90°, so we add the known values, then subtract from 90°.
$90-27=73$
27°

Step 2

To find the missing angles from a straight line angle, we know that this angle is exactly 180°, so we add the known values, then subtract from 180°.

$$
180-62=118
$$

So the missing angle is 118°

Step 3

To find the missing angles from a full turn, we know that a full turn is exactly 360°, so we add the known values, then subtract from 360°.

$$
360-136=224
$$

Missing Angles Answers

Year 5 Maths @miss_teasel

Step 1

To find the missing angles of a right angle, we know that a right angle is exactly 90°, so we add the known values, then subtract from 90°.

Step 2

To find the missing angles from a straight line angle, we know that this angle is exactly 180°, so we add the known values, then subtract from 180°.
62°

Step 3

To find the missing angles from a full turn, we know that a full turn is exactly 360°, so we add the known values, then subtract from 360°.

$$
360-136=224
$$

Step 1

Translations

Year 5 Maths @miss_teasel

A translation is a movement of a shape by a given set of instructions. Choose a point, or use the one given if there's one. Translate 3 right and 1 down.

Step 2

Count the correct amount of units across and draw a small dot. This will be your left/right instruction.

Step 3

From the dot that you've just drawn, count the correct units down (or up, depending on your instructions.

Step 4

Then draw the original shape in the new position starting with the dot.

Year 5 Maths @miss_teasel

Step 1

A translation is a movement of a shape by a given set of instructions. Choose a point, or use the one given if there's one.
Translate 3 right and 1 down.

Step 2

Count the correct amount of units across and draw a small dot. This will be your left/right instruction.

Step 3

From the dot that you've just drawn, count the correct units down (or up, depending on your instructions.

Step 4

Then draw the original shape in the new position starting with the dot.

Translate the following shapes on the page according to their colour.

Step 1
A reflection is where each point in a shape appears at an equal distance on the opposite side of a given line. Choose a point, or use the one given if there's one.

Step 2

Count the units from the point to the mirror line. Count the same number the other side and draw a dot.

Step 3

Repeat with the other points and join together using a ruler.

Reflect the shapes against the line of symmetry

Year 5 Maths

Step 1

A reflection is where each point in a shape appears at an equal distance on the opposite side of a given line. Choose a point, or use the one given if there's one.

Step 2

Count the units from the point to the mirror line. Count the same number the other side and draw a dot.

Step 3

Repeat with the other points and join together using a ruler.

Reflect the shapes against the line of symmetry

(2)

